
MEMORANDUM
RM-55C7-PR
JANUARY 1968

ON SOLUTIONS FOR r:,PEBE..N GAMES
William F. Lucas

PREPARED FOR:

UNITED STATES AIR FORCE PROJECT RAND

7 4 NOIDA H AO
SANTA MONICA *CALIFORNIA



MEMORANDUM

TM-F557-PR

JANUARY 1105

ON SOLUTIONS FOR n-PERSON GAMES
William F. Lucas

This reearch is supported by the United States Air Forc. under Project RAND - Con,
trar-t No. F Il620.67.C.f)'15 - monitored iv the Directorate of Operational Rlequire.
mint aid De, elopmvnt Plan4. Dp t v Chit f Staff. Research and Development. Hq
. . A.. .HAND Memoralda are .u bjcit ]it critical r.v ivv. proi-edur% tit the reearch d'.
partnivlt ai,(1 vorporate hexlvv Views and conc'lusion, e pre, 'd i he rin are nevei rtheless
the primary rusipon-ihility of the author. and shoudr not Ie interpreed as repres.,iting
the official opinion or policy of the, United State.; Air Force i'r of The RAND Corporatiol.

DISTRIBUTION STATEMENT
Distribution of this document is unlimited.

___________________ 7fl~U n__



-ill--. 1

PREFACE

This Memorandum reports two theoretical results in the

mathematical theory of n-person cooperative games in characteristic

function form. It represents a further extension of the discovery

initially reported in BM-5518-PR, A Game With No Soiution, and

PM-5543-PB, The Proof That a Game May Not Have a Solution,

that certain conjectures based on the von Neumann-Morgenstern

theory of solutions for n-person games are false. Game theory

is a continuing study sponsored by Project RAND.



SUMMARY

A solution concept for n-person cooperative games in

characteristic function form was introduced by von Neumann and

Morgenstern. This Memorandum reviews the definitions of an

n-person game and then describi.s two p-articular games whose

sets of solutions are rather restricted. The first is a five-person

game which has a unique solution that is nonconvex. The second

is an eight-person game which has no solution which possesses

the symmetry of the characteristic function.
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ON SOLUTIONS FOR n-PERSON GAMES

I. INTRODUCTION

In 1944 Von Neumann and Morgenstern (6] introduced a theory

of solutionk (stable sets) for n-pe;-zon games in characteristic

function form. Earlier results in solution theory led to various

conjectures such as: that every game has at least one solution,

that at least some of the solutions for a game can be characterized

in an elementary manner, and that the union and intersection of all

solutions for a game had certain properties. More recent develop-

ments, however, show that several of these conjectures about

solutions are false [ L, 2, 5) and that there are even games which do

not have solutions ( 3P 4). Thi's Memorandum reviews the essential

definitions for a game and then describes two particular games

which illustrate some additional developments of this latter type.

Section 3 describes a five-person game which has a solution

which is unique and nonconvex. Ab eight-person game with a unqfLv,,

and nonconvex solution has already been described in C 2]. The

present example is of interest because of the fewer number of

players involved and because its core differs somewhat from those

in the previous papers [ 1, 2, 5].

Section 4 describes an eight-person game which has solutions,

but none of its solutions possesses the symmetry of the characteristic
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function. This result is not surprising in light of the counter-

example on existence (3, 41. In fact, it can be viewed as the "two-I

dimensional" analog to the "three-dimensional" aspects of this

counterexample, However, the author arrived at the results in

this Memorandum before that in C 3, 43, and they are still of some

interest on their own. After the results in [ 1, 2, 53 were known,

L. S. Shapley suggested to the author that the derivation of a game

without a symmetric solution may be the next step in arriving at a

game with no solution.
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2. DEFINITIONS

An n-p erson game is apair (N,v) where N -1,2,... , Is

a act of n players and v is a chara'teristic function on 2 N I.e.

v assigne the retd numbter v(S) to each ,iubset S of N and v(i) - 0

for the empty act T, The get of imputations is-

A ( Cx: L x, - v(N) and xi > v( (I)) for all i1N)

itN

where x - (x 1 X2 ... Ixn) is a vector with real components.

If x and y4A and S is a nonempty subset of N, then y dominates

x via S if

(I) y 1 
> x for all it.S

and

(2) Ei < v(S),
its

and this is denoted by y doam s x. If there exists an S such that

y domSx, then one says that y dominates x and denotes this by

y doam x. For any yiA and YCA define the following dominions:

Domy xA:ydomx), Dom y = xA:y dom x),

DomsY U DomsY, and Doam Y = U Dom y; and the inverse
yd Y -I yY 1

dominions: Dom- y uztA: z dor y) and Dom Y * U Dor - y.
yYY

To simplify the notation In (2) let

y(S) r Yiy
Its

A - -
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Also, expressionw tiuch ab v( 1,3,5, 7)) and x( (2,5,73) will be

shortened to v(1357) and x(257) respectively.

A subset K of A W a solution if

(3) Kn Dom K =

and

(4) KUDom K x A.

If K'CXCA, then K' Is a solution for X if

(3') Kn Dorn KI

and

(4') K'UDomKI X

The core of the game (N, v) is

C - CxiA: x(S) > v(S) for aU SCN),

The core is a convex polyhedron (pessibly empty), and for any

solution K, C K andKfDor C • •



3. A GAME WITH A UNIQUE SOLUTION WHICH IS NONCONVEX

Consider the five-per.son ganc (N, v) wheru N 1, 2, 3, 4, 53

arnd v is given V;

v(N) - 3, v(234) v(45) = 2,

v(12) = v(45) a v(35) = v(34) =

v(S) - 0 for all other S aN.

For this game

A l[x: x(N) = 3 and x. > 0 for all itN.

In studying this game it is helpful to introduce the three-

dimensional triangular wedge B which has the six vertices:

0 1, 2=2c =(0, 1, l,1,0), c (0, 1,01, 1), d (0,110, 1)

One can show that

• B = xxEA:x(S)> v(S) for all S except i2, 3,4))

0 1 2One can also prove that the core C is the convex hull of c ,c ,c

• 3
and c , and that

C {xB: x(234) > 2.

The unique solution for this game is

K =CUD3 UD 41
where D 3" xBx 3 = 1)-C andD4= 4 xfB:x 4 1-C. This

solution is pictured in Figure 1. To prove that K is the unique

£i



(Q,0,1) C 2L

C -l

D3anc DA - --- -

Fig -1 -A unique oktrion which 4i rorconvex
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solution it is sufficient to verify that Dom C 3A-B and to observe

that K is precisely those elemento in B which are maximal with

-respect to the relation "dom (2 P4'" Therefore, this game has

a unique solution which is clearly loflconvex.



4. A GAME WITH NO SYMMETRIC SOLUTION

Consider the eight-person game (N, v) where N = (1, 2, 3, 4, 5, 6, 7, 8)

and v is given by:

v(N/ - 4,o v(1357) =3, v(257) =v(457) -- 1,

v(12) - v(34) = v(56) = v(78) 1,

v(S) = 0 for all other SCN

This game is symmetric, in the sense that one can interchange I with

3 and 2 with 4 and the characteristic function remains invariant.

For this game:

A = (x: x(N) = 4 and x. > 0 for all ieN]
I-

It is helpful to introduce the four-dimensional hypercube

H = fxeA: x(12) = x(34) = x(56) = x(78) = 1.

One can prove that the core for this game is

C = (xcH: x(1357) > 31

and that C is the convex hull of the following five vertices of H:

C (1,o 0 1,01, 0,1, 0), c2 (0,1,1, 0,1, 0?1, 0), c =( 1,0,0,1,1,0,1,0),

6c (0, t,l,l,0), andc8 = (1, 0,1, 0, 1 0, 0,,1).

Define the following eleven regions in H:

F i =xcH: xi 1 i = 1, 3,5,7

SF FIU F3 UF5 UF 7 -C
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x F:x(i+ 1,5,7)< I 1 1,3

E =E 1 UE 3

C. - txf :x(457) I)

G 3 = ixE 3 : x(257) = I

G =G UG

The traces of these regions on some three-dimensional cubical

traces of H are shown in Figure 2, The sets G I and G 3 are

triangles and are illustrated in Figure 3. The regions A-H,

H-rCU(F-E)UE1, C, F-E, and E form a partition of A.

One can use arguments like those in [4J to prove that

(5) Dom C x [A-H] U [H--(CUF)]

and thus any solution K for this game is contained in CUF. One

can also check various cases to prove that

(6) (F-E)fnDom(CUF)

and

(7) EfnDom [C U(F-E)] $

Therefore, any solution is of the form

K = CU(F-E)UK'

where K' is a solution for E. The sets C, F-E, E, and G do exhibit

the symmetry of the characteristic function.



F

C2

C --- --

G 1 N 4 , . .-ll~ l

C

In each cube F / -T - -
Left face: x, 1, x 2 0 IJ
Right face: x = 0, x2 = 1 x7 = .- 1
Bock face: x3 = I, x 4

= 0 X,= =

Front face: × = 0, x4  
= 1

Top face: x5  1, x6 = 0 I\G "..G-
Bottom face: xs =0, x6 -= 1

\r

x 7 =0 ' 3
x.= 1 I\ E1 "\

Fig.2-Traces in H of C, E, F - E, and G
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OM"? (Oom'ty) Domrny

xy 0 0 X7 O =00X

y

G, xS = 0 x, x's 0 x? G3

Notw: The common top edge is in the core and not in G
InG: x2 = 0, X4 >0
In 3: X2 >0, X, = O

Fig.3-The region G
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It will follow from the following two le nmas that the problem

of finding a solution K' for E is equivalent to finding a solution K"

LEMMA 1. For any solution K' for E

K'n (xt E: x(257) < I and x(457) < I- .

PROOF. Assume that the LEMMA is false, and pick an x in

this intersection. If xEI pick yE I so that y( 4 5 7 ) = I and yi > x '

for i = 4, 5, 7. Then ylK' since y dom 4,5,7 x. Thus there exists

zEK' such that z dora y. One can then see that z dom( 2 ,5,71 y; and

clearly z 2 >Y2 a 0 rx 2 . Therefore, zdomf2 5 , 7 xandxiK'. A

symmetrical argument shows that if x4E 3 then x is not in this

intersection.

LEMMA 2. Let L(x, x') be the closed line segment joining

x and x', and let K' be a solution for E. If yEG 1 and y'

(ylY2), ,Y Y5 y 6,y 7, y 8 ), then L(y,y')nK' # implies that L(yy')CK'.

If z(G 3 and z' = (0 1,z 3 , z 4 , z 5 , z6 1, z.), then L(z, z')lK'IO implies

that L(zZ')CK'.

PROOF. Assume that xEL(yy') - K'. Then xDom K', and by

checking cases one can see that xc Dom 215, 7 ) K'. However,

xi = yi = y' when i = 2, 5, and 7, and thus L(y, y')cDom 5 K'

or L(yy')fK' = . A similar proof works for the second part of the

LEMMA.



One can now show that there Is no solution K" foz- G such that I
K" has the symmetry of the characteristic function, i. e., if y tK"

then y' = (y 3 Y y ,yyY,,y 0 ) i K". Clearly, K'" # 4. Pirk an

arbitrary ytK", and assume that ywct , ('ondition (3f) implies that

(a) K"n Dom-y -

where

GDom y = fxG x> y for i 5 and 7)

Conditions (4') and (8) imply that

(9) K" nDom- (Dom- y)

where

GflDom- (Dom y) = Z'Gl:Zi >Yi for ! = 5and 7.

See Figure 2 for an illustration of these sets, If z is any imputation

in the intersection in (9), then ztK" and z dom (4, 7.1 y' ' because

z 4 >0y 2 =y 4 , z5 > Y5 = YS, and z > y7 -Y Therefore, y(K"

but the symmetrical point y'wK". A symmetric argument holds if

one assumes ycG 3 . It follows that there is no symmetric solution

K" for G, and thus no symmetric solution K for this eight-person

game.

This game does however have solutions. For example, GI and

G 3 are solutions for G. There are also infinitely many other
sc

solutions forG0, each of which contains imputations from both
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and G The existence of these latter solutions was pointed out by

L. S. Shapley. Any solution K' for G can be extended tu a solution

KI for E by making use of the IEMMAS. The set

K = CU(F-E)UK'

will then be a solution for this game.

The classical theory of games assumed that the characteristic

function is superadditive, i. e., v(S IUS 2) > v(S ) + v(S2) whenever

Sn flS2 w C The two games in this paper can be transformed into

superadditive games which have the same A, C, and solutions K.
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